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1 Introduction

The solution to a number of modern computer
problems takes the form of a manual, expert-guided
search through a large space of computer configura-
tions. For example, if a desktop computer is crash-
ing or malfunctioning, a troubleshooter will use her
knowledge of system features such as configuration
files, registries, and dynamic library versions to ap-
ply a series of configuration changes until the system
once again begins functioning. As another example,
to obtain good performance from a complex system
like a database or a web application, a specialized
and highly paid administrator will explore the set of
application and operating system parameters to find
the optimal values.

Our goal is to move the burden of this search
process from humans to machines. If we can provide
appropriate mechanisms to automate the search pro-
cess, many systems issues that are currently complex,
expensive, and time-consuming will be simplified and
made accessible to non-experts. In effect, we want to
apply goal-directed optimization techniques to the
problem of finding a good system configuration out
of the space of possible configurations.

Related projects have tackled similar problems
by modeling system behavior [1, 8]. However, model-
ing is time consuming and error prone, as it requires
a person to generate an accurate enough model to
capture the system’s relevant behavioral properties.
Instead, we propose using virtual machine monitors
(VMMs) to directly execute the system itself inside a
virtual machine [4, 13, 15]. Assuming that the VMM
is able to faithfully recreate the physical machine’s
behavior, our approach can capture all nuances of a
system without requiring deep knowledge of how it
works.

In the rest of this paper, we focus on one problem
in this general class: diagnosing computer configura-
tion errors. In Section 2, we describe the Chronus di-
agnosis tool, which finds errors by searching through
the timeline of previous system states. In Section 3,
we relate some of our early successes and experiences
with Chronus, and we describe some of its inherent
limitations. After discussing related work, we con-
clude, and we describe future work on the more gen-
eral problem of finding good configurations in a large
search space.
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Figure 1: Fault Diagnosis With Time Travel:
Chronus logs all changes to system state so that it can
emulate system behavior at arbitrary points in the past.
By using search, Chronus determines the instant the fault
was introduced.

2 The Chronus Diagnosis Tool

Computer failures are often caused by changes
in the computer’s configuration or runtime environ-
ment, such as dynamic library upgrades, Windows
registry modifications, or errors in Unix “/etc/rc”
files. Troubleshooting such errors requires a deep
understanding of arcane system features, and ask-
ing ordinary users to master this knowledge is like
asking a non-mechanic to repair his own car. Our
goal is to automate the process of diagnosing con-
figuration errors by navigating through the space of
possible configurations, attempting to find one that
results in a functioning system.

In Figure 1, we illustrate our strategy for per-
forming this search. We assume that a configuration
fault, such as installing an incompatible library, takes
a computer from a functioning state to a malfunc-
tioning state. If we can maintain a complete log of
system states over time, once a fault is detected, we
can search through the past states of the system for
the precise instant that the system first entered the
faulty state. There are two benefits to this approach:
we can use binary search to quickly “hone in” on the
point in time where the fault occurred, and we can
use the log of state changes to map from an observed
behavior, such as an application crash, to a low-level
state event, such as an update to the libc library.

2.1 Chronus Architecture

Our tool, called Chronus, explores configurations
the system experienced over time, and diagnoses fail-



ures by comparing the system state before and after
a problem arose. We rely on four components:

• Time-travel disks. Chronus logs all disk up-
dates of a running system, giving it the ability
to recreate any past system disk state.

• Virtual machines. By using a virtual machine
monitor in combination with time-travel disks,
Chronus can create a VM that emulates the sys-
tem at some point in its history.

• An “analysis” engine. To find a fault, the
analysis engine navigates through past configu-
rations to find the state change responsible for
causing the system to malfunction.

• Software probes. To test configurations,
we run probe code within the VM to validate
whether the system is functioning correctly.

Chronus focuses exclusively on state changes to
stable storage. This contrasts with the traditional
notion of checkpointing, which also includes memory
and CPU state. We observe that many configuration
changes require an application or system restart be-
fore they have an effect, and therefore instantaneous
system snapshots are not necessarily meaningful. An
additional benefit of Chronus’s disk-only checkpoints
is that they impose little overhead beyond the space
required to maintain a disk history, which is known
to be manageable [11].

We have implemented a prototype of Chronus
on top of the µDenali virtual machine monitor [15].
µDenali is an extensible VMM, in that it allows a
“parent” VM to modify portions of the virtual archi-
tecture of “child” VMs. Figure 2 shows the overall
Chronus architecture. The parent VM implements
the time-travel storage layer in a software module
called TTDisk. A child VM executes normal user pro-
grams, and is oblivious to the presence of the time-
travel functionality. After a problem is reported, an
Analysis Engine inside the parent VM automates the
task of searching through time for the instant that
the problem emerged. At each time step, the Anal-
ysis Engine boots a new VM, and runs a software
probe to indicate whether the system was in a correct
state. We now describe these software components in
more detail.

The amount of new implementation beyond the
µDenali support libraries is 1645 lines of C code.
Chronus runs on the NetBSD operating system.

2.2 Time-travel Disks

A TTDisk extends the µDenali disk interface by
recording all block writes to an append-only log, in a
manner analogous to a log-structured file system [10].
With this model, a “timestamp” is simply an offset
into the log, and “time-travel” is implemented by
ignoring block writes after a given timestamp.

µDenali VMM

Child

 Guest OS

Parent

Guest OS

TTDisk
Chronus

 Analysis

 Engine

Figure 2: Chronus Architecture: During normal
operation, disk writes are logged to a Time Travel Disk.
During analysis, Chronus rolls back time and runs a user-
provided software probe to test whether the system was
in a correct state.

Within the µDenali VMM, there is a one-to-
one correspondence between a TTDisk and a virtual
machine. Chronus provides an administrator util-
ity called forktt, which creates a new TTDisk from
a read-only base disk image and an initially empty
log disk. The implementation of these storage ab-
stractions is hidden behind the µDenali disk inter-
face. Presently, we map these disks to files in the
parent’s local file system.

During the analysis phase, it is crucial to quar-
antine the side effects of search probes. To this end,
the TTDisk instance is wrapped by a copy-on-write
(COW) disk prior to each probe. Once the probe
has terminated, the COW delta is discarded, in ef-
fect garbage collecting side-effects that occurred dur-
ing the probe. Of course, the child VM being probed
is oblivious to the COW and TTDisk storage layers.

2.3 Analysis Engine

The Analysis Engine takes as input a user-
provided software probe, which tests whether the
child VM was in a correct state at a given time step.
Using this probe, the Analysis Engine searches across
the child’s timeline for the instant the system tran-
sitioned to a failed state. At each time step, the
child VM is booted from the reconstructed past disk
image. By running the probe, the Analysis Engine
learns whether the search should continue in the fu-
ture or in the past.

The Analysis Engine quickly isolates configura-
tion errors by using binary search. We start by run-
ning the user-provided software probe at the first and
last time steps. If the results are the same, Chronus
quits because further probes will not yield meaning-
ful results. Otherwise, Chronus uses binary search
to recursively find where the fault point must lie.
Unlike a traditional binary search, our algorithm is
not looking for a particular element, but rather the
transition from one state to another. Therefore, the
best-case and worst-case runtimes are the same.

Strictly speaking, the automated search only re-
veals when the failure occurred. Using this informa-
tion, it is possible to uncover the source of the er-
ror by comparing the disk state before and after the
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Figure 3: Control Flow for a Probe: Chronus dis-
tinguishes between external probes, which are run from
the testing VM, and internal probes, which are run inside
the VM being tested.

failure. Our prototype currently mounts the TTDisk
before and after the failure, and uses the UNIX diff
tool to determine what has changed.

2.4 Software Probes

A software probe is system- or application-
specific code that tests whether the system is func-
tioning correctly. For example, a probe may vali-
date that the system booted correctly, that a daemon
(like sshd) runs and permits remote login, or that a
web server is correctly serving documents. Software
probes allow the system to validate whether or not
a specific configuration contains a fault. Crucially,
probes do not attempt to explain the fault cause; they
simply test whether the fault exists.

Chronus distinguishes between two styles of
probes. External probes are run from the parent VM,
probing the child VM over the network; these are typ-
ically useful for diagnosing problems with network
servers. Internal probes are run inside the child VM
itself. To extract the result from an internal probe,
Chronus allows for a user-provided post-processing
routine, which has access to the child’s disk state af-
ter shutdown. For both styles of probes, Chronus
runs an optional pre-processing routine to initialize
the child’s disk state. A typical pre-processing rou-
tine would modify the child’s /etc/rc file to run a
given probe command on system boot.

Figure 3 describes the control flow for internal
and external probes. The primary difference is that
for internal probes, we destroy the child VM before
extracting the probe result to avoid concurrent ac-
cess to the TTDisk. External probes must interact
with the live child VM, and therefore the order-of-
operations is reversed.

3 Experience

We now describe some of our experiences with
the Chronus tool, to give intuition for how the tool
works and to demonstrate that Chronus can diagnose
simple configuration errors. We emphasize that our
evaluation to date is preliminary, and that work is
ongoing to increase the scope and realism of our anal-
ysis. For these tests, both the parent and child VMs
ran the NetBSD operating system, version 1.6.1.

#!/bin/sh

TEMPFILE=./QXB50.tmp
rm -f ${TEMPFILE}

ssh root@10.19.13.17 ’date’ > ${TEMPFILE}

if (test -s ${TEMPFILE})
then echo "SSHD UP"

else echo "SSHD DOWN"
fi

exit 0

Figure 4: A Chronus Probe Routine: This is the
complete version of a shell script that diagnosed a con-
figuration fault in the ssh daemon.

To create an evaluation workload, we wrote a
program called the etc-smasher, which simulates
making typos in critical system configuration files.
Once per second, etc-smasher chooses a random file
from the /etc directory, which contains system-wide
configuration files and application-specific configura-
tion options. For 90% of the tests, the smasher writes
back the file without modifying it, creating “back-
ground noise” for the system. For the remaining 10%,
etc-smasher changes the file in a small way, by either
removing, adding, or modifying a character.

The first two runs of this program produced the
following configuration errors:

Configuration Fault #1: sshd. The child VM’s
ssh daemon has stopped responding. This prevents
a user without terminal access from even attempting
a problem diagnosis.

Configuration Fault #2: boot failure. The
child VM does not boot correctly. Instead of a lo-
gin prompt, the user is asked to enter a shell name.

For the sshd fault, we wrote a simple probe that
attempts to login via ssh. This probe (shown in Fig-
ure 4) is an external probe: it runs on the parent VM.
This probe script is simple, and it only deals with the
observable behavior of ssh, not with potential causes
of sshd’s failure.

Figure 5 shows the Chronus output for the sshd
fault. Comments (preceded by ’#’) have been added
for clarity. In the first phase, the analysis engine lo-
calizes the failure to time step 4920. We then mount
the disk at time steps 4919 and 4920, and use a re-
cursive diff to compare the two file systems. In this
case, the error resulted from corruption to the file
ssh host key, which contains the child’s private key.

The boot fault required an internal probe, whose
functionality is split across two shell scripts. The
initialization script modifies the child’s boot script
to run a command at the end of the boot process.
The post-processing script extracts the output of this
command from a file in the child’s file system. The
probe scripts are omitted for space, but they are
of comparable complexity to the sshd script shown



# binary search phase
% ttsearch netbsd andrew.time

0000: SSHD UP 5267: SSHD DOWN 2633: SSHD UP
3950: SSHD UP 4608: SSHD UP 4937: SSHD DOWN
4772: SSHD UP 4854: SSHD UP 4895: SSHD UP
4916: SSHD UP 4926: SSHD DOWN 4921: SSHD DOWN
4918: SSHD UP 4919: SSHD UP 4920: SSHD DOWN

# attach ttdisk before and after fault
% attach2 andrew.time 4919 4920

# use recursive diff to find what changed
% diff -r --exclude ’*dev*’ /child1 /child2
Binary file /etc/ssh/ssh_host_key differs

Figure 5: Diagnosing sshd Failure: This execution
correctly identified the fault point after disk write 4919.

above. Figure 6 shows that Chronus was able to lo-
calize this fault to a change in the bootconf.sh.

At present, Chronus requires roughly 10 seconds
to reconstruct a disk from the past, boot a NetBSD
VM, and execute a probe. The sshd failure diagnosis
took roughly 2.5 minutes. Much of this time is spent
busy waiting, because µDenali does not currently
provide a reliable mechanism for the child to signal to
a parent that it has finished running a probe. With
the addition of this functionality, we should be able
to decrease runtime by a factor of 5.

4 Discussion

Chronus relies on user-supplied software probes
to characterize the system’s correctness. We envision
two scenarios for probe authorship. First, an expert
user or administrator can create a probe on the fly
in response to specific error conditions. An alternate
approach is for software vendors to include a set of
default probes with their software packages. These
probes could be derived from development-time re-
gression tests that already exists. This latter sce-
nario is more applicable for unmanaged machines in
a home environment.

Another set of issues relate to inconsistencies
that may arise during the search process. One poten-
tial problem is that booting from a disk that was not
properly shut down could generate spurious errors
unrelated to the problem under consideration. This
can happen because the file system lacks a transac-
tion mechanism for robustly applying state changes.
For example, there is no way to atomically rename
multiple files. In the worst case, Chronus could be
led down an incorrect path because it has detected a
false configuration error. Another potential problem
source is non-deterministic errors, which may prevent
finding the failure transition point with just a single
run of the analysis engine. It may prove possible to
address these sources of error by running the analysis
engine multiple times and using probabilistic analy-
sis.

In some cases, the information provided by
Chronus may be too fine-grained to be useful.

# binary search phase
% ttsearch netbsd andrew2.time

0000: SUCCESS 1607: FAILURE 0803: SUCCESS
1205: SUCCESS 1406: SUCCESS 1506: FAILURE
1456: FAILURE 1431: FAILURE 1418: FAILURE
1412: FAILURE 1409: FAILURE 1407: SUCCESS
1408: FAILURE

# attach ttdisk before and after fault
% attach2 andrew2.time 1407 1408

# use recursive diff to find out what changed
% diff -r --exclude ’*dev*’ /child1 /child2

file: /child1/etc/rc.d/bootconf.sh differs
< conf=${_DUMMY}
> conf=${$DUMMY}

Figure 6: Diagnosing Boot Failure: This execution
correctly identified the fault point after disk write 1407.

Chronus tends to implicate microscopic events (e.g.,
a change to a specific file) rather than macroscopic
events (e.g., the installation of a particular software
package). The Backtracker tool [6] may prove use-
ful at bridging the gap from low-level state events
to high-level user actions. Integrating Chronus and
Backtracker is an area for future work.

A fundamental limitation of Chronus is that it
cannot diagnose problems that involve external fac-
tors such as network failures. In some cases, however,
Chronus can be helpful by narrowing down the search
space. For example, a network outage can be caused
by hardware failure (a fault outside the system) or by
an incorrectly specified subnet mask (a fault inside
the system). By ruling out internal faults, Chronus
can allow human administrators to make better use
of their time.

5 Related Work

The state of the art for dealing with change-
induced failures is to rollback the system to a known
good state [7], possibly applying application-level
state replay to avoid losing work [3]. The limitation
of such approaches is they require the user to know
when the fault was introduced in order to choose an
appropriate state snapshot. This is difficult on sys-
tems where configuration changes can be introduced
by multiple users or by system daemons like auto-
matic software update. Additionally, rollback sys-
tems provide little insight as to why a particular ac-
tion caused a failure — for example, a user may learn
only that Service Pack 1 caused the failure. Chronus
can shed light on the source of failures by essentially
replaying the fault in slow motion.

A different approach to problem diagnosis is to
construct software agents that embody the knowl-
edge of a human expert [2]. The limitation of such
systems is that they are only as good as their initial
problem diagnosis heuristics. Complex systems gen-
erate unexpected errors. Chronus can capture these



errors by operating beneath the layer of operating
system and application semantics.

Our vision is similar to the no-futz agenda of
Margo Seltzer’s group [5]. This group advocates re-
thinking the design and layout of system configura-
tion state to reduce the chance of unintended side-
effects. Although this is a worthy design goal, the
tight integration of today’s application and system
functionality suggests this approach won’t solve all
configuration problems. Also, Chronus provides ben-
efit to systems as they currently exist, without requir-
ing potentially disruptive changes to the mechanisms
used for storing system configuration state.

Recently, Redstone et al. proposed a model
of collaborative debugging [9]. This approach ex-
tracts relevant problem symptoms to serve as a query
against a database of known problems. A key chal-
lenge for such a system is constructing a database and
query engine that give meaningful results. Chronus
avoids using databases by directly “querying” the
system state at a previous instant in time. The re-
sults returned by our system will be more relevant
because they pertain exclusively to the system under
consideration.

Delta-debugging [16] applies search techniques to
the problem of localizing source code edits that in-
duced a failure. Delta-debugging does not assume
changes are ordered, and much of the system’s com-
plexity derives from having to prune an exponentially
large search space. The challenges for Chronus relate
to capturing and replaying complete system states
using time-travel disks and virtual machines.

Perhaps the closest system to Chronus is
Strider [14], which automatically finds configura-
tion errors in the Windows Registry. Unlike
Chronus, Strider is targeted at a specific configu-
ration database, and it relies on Registry-specific
knowledge to prune the search space. By captur-
ing raw disk blocks, Chronus can diagnose errors
for arbitrary applications and OS’s — even for soft-
ware systems that haven’t been written yet. Another
difference is that Chronus leverages virtual machine
monitor technology for running time-travel probes.
VMMs enable the detection of low-level errors that
arise during system boot, and provide the ability to
isolate and discard changes made during analysis.

6 Conclusions and Future Work

Our goal in this work is to move some of the bur-
den for diagnosing computer problems from humans
to machines. Our approach is based on the com-
bination of two emerging technology trends. First,
large disks make it possible to log all storage ac-
tivity over extended durations. Second, virtual ma-
chine monitor technology makes it safe and fast to
test a large number of prior system configurations.
We have constructed a problem diagnosis tool called
Chronus, and demonstrated that it can accurately

diagnose simple system configuration errors.
We are building on the work described in this

paper by exposing Chronus to a larger and more
realistic battery of tests. For example, we are us-
ing Chronus to diagnose errors that arise during the
configuration of a web server with database-driven
content. We are also performing quantitative bench-
marks that analyze overhead during normal opera-
tion and the fault diagnosis time.

Finally, we are exploring applications of Chronus
to the problem of self-tuning systems. Previous work
in this area has operated“in-the-small” by tuning a
small number of parameters — for example, TCP
socket buffer sizes [12] or the Lotus Notes admission
control threshold [8]. We believe it is possible to
analyze significantly larger configuration problems.
Virtual machine monitors can give us leverage in two
ways: (1) considering configuration choices with de-
layed effects, such as applying software patches or
kernel compile options; and (2) considering poten-
tially unsafe configuration choices that could render
the system unusable or insecure. We anticipate that
the key challenge in this application will be finding
mechanisms to specify paths through the configura-
tion space, and for pruning down the space of con-
figuration choices in the presence of noisy or non-
deterministic processes.
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