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Abstract

We describe a content addressable network which is robust in the face of massive adversarial

attacks and in a highly dynamic environment. Our network is robust in the sense that at any

time, an arbitrarily large fraction of the peers can reach an arbitrarily large fraction of the data

items. The network can be created and maintained in a completely distributed fashion.

1 Introduction

Distributed denial-of-service attacks on the Internet are highly prevalent, targeting a wide-range
of victims [3]. Peer-to-peer systems are particularly vulnerable to such attacks, since peers lack
the technical expertise and resources needed for maintaining a high level of protection. In addition
to being vulnerable to such attacks, we can expect peer-to-peer systems to be confronted with a
highly dynamic peer turnover rate [8]. For example, in both Napster and Gnutella, half of the
peers participating in the system will be replaced by new peers within one hour. Thus, maintaining
fault-tolerance in the face of massive targeted attacks and in a highly dynamic environment is
critical to the success of a peer-to-peer system.

The contributions of this paper are two-fold. First, we de�ne the notion of dynamically strong

fault-tolerance. Our de�nition captures the properties that a peer-to-peer system must have to be
robust to orchestrated attacks and in a highly dynamic environment. Second, we present a content
addressable network [9] which is dynamically strong fault-tolerant.

1.1 Dynamic Fault Tolerance

To better address fault-tolerance in peer-to-peer networks, we de�ne a new notion of dynamically

strong fault-tolerance. First, we assume an adversarial fail-stop model { at any time, the adversary
has complete visibility of the entire state of the system and can choose to "delete" any peer it
wishes. A "deleted" peer stops functioning immediately, but is not assumed to be Byzantine.
Second, we require our network to remain \robust" at all times provided that in any time interval
during which the adversary deletes some number of peers, some larger number of new peers join
the network. Each new peer knows only one other live peer in the network.

More formally, we say that an adversary is limited if for some constants  > 0 and Æ > , during
any period of time in which the adversary deletes n peers from the network, at least Æn new peers
join the network (where n is the number of peers initially in the network). We assume that each
of these new peers knows only one random peer currently in the network.

We say that a content addressable network (CAN) is �-robust at some particular time if all but
an � fraction of the peers in the CAN can access all but an � fraction of the content.

Finally, we say that a CAN (initially containing n peers) is �-dynamically strong fault-tolerant

(or simply �-dynamically fault-tolerant) if, with high probability, the CAN is always �-robust during
a period when a limited adversary deletes a number of peers polynomial in n.
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In section 2, we present an �-dynamically fault-tolerant CAN for any arbitrary � > 0, and any
constants  and Æ such that  < 1 and Æ >  + �. Our CAN stores n data items1, and has the
following characteristics:

1. With high probability, at any time, an arbitrarily large fraction of the nodes can �nd all an
arbitrarily large fraction of the data items.

2. Search takes time O(log n) and requires O(log2 n) messages in total.

3. Every peer maintains pointers to O(log3 n) other peers.

4. Every peer stores O(log n) data items.

5. Peer insertion takes time O(log n).

The constants in these resource bounds are functions of �,  and Æ. The technical statement of
this result is presented in Theorem A.3.

We note that, as we have de�ned it, an �-dynamically fault-tolerant CAN is �-robust for only a
polynomial number of peer deletions by the limited adversary. To address this issue, we imagine that
very infrequently, there is an all-to-all broadcast among all live peers to reconstruct the CAN(details
of how to do this are in [1]). Even with these infrequent reconstructions, the amortized cost per
insertion will be small.

1.2 Related Work

Fiat and Saia [1] present a content addressable network for which even after adversarial removal of
a linear number of nodes in the network, an arbitrarily large fraction of the remaining nodes can
access an arbitrarily large fraction of the original data items. While the Fiat-Saia network is an
important �rst step towards the goal of a strongly fault-tolerant CAN, this scheme is inherently
static. Thus, even if many new peers join the network, the CAN ceases to be �-robust when all the
original peers die.

Weaker forms of static fault-tolerance are known to exist for other peer-to-peer systems. Exper-
imental measurements of a connected component of the real Gnutella network have been studied [8],
and it has been found to still contain a large connected component even with a 1/3 fraction of ran-
dom peer deletions.

Several address content addressable networks are robust under random node deletions [4, 9, 2].
For example, Chord correctly routes queries in O(log(n)) expected time even after each node
fails with probability 1=2. However, it is unclear whether it is possible to extend any of these
systems to remain robust under orchestrated attacks. In addition, many known network topologies
are known to be vulnerable to adversarial deletions. For example, with a linear number of node
deletions, the hypercube can be fragmented into components all of which have size no more than
O(n=

p
log n) ([5]).

2 A Dynamically Fault-Tolerant Content Addressable Network

Our scheme is most easily described by imagining a \virtual CAN". The speci�cation of this CAN
consists of describing the network connections between virtual nodes, the mapping of data items
to virtual nodes, and some additional auxiliary information. In Section 2.1, we describe the virtual
CAN. In Section 2.2, we go on to describe how the virtual CAN is implemented by the peers.

1For simplicity, we've assumed that the number of items and the number of initial nodes is equal. However, for
any n nodes and m � n data items, our scheme will work, where the search time remains O(log n), the number of
messages remains O(log2 n), and the storage requirements are O(log3 n�m=n) per node.
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Figure 1: The buttery network of supernodes.

2.1 The Virtual CAN

The virtual CAN, consisting of n virtual nodes, is closely based on the [1] scheme. We make use of
a buttery network of depth log n� log logn, we call the nodes of the buttery network supernodes

(see Figure 1). Every supernode is associated with a set of virtual nodes. We call a supernode at
the topmost level of the buttery a top supernode, one at the bottommost level of the network a
bottom supernode and one at neither the topmost or bottommost level a middle supernode.

We use a set of hash functions for mapping virtual nodes to supernodes of the buttery and for
mapping data items to supernodes of the buttery. We assume these hash functions are approxi-
mately random. 2

The virtual network is constructed as follows:

� We choose an error parameter � > 0, and as a function of � we determine constants C, D, �
and �. (See [1] for detailed information on how this is done).

� Every virtual node v is hashed to C random top supernodes (we denote by T (v) the set of
C top supernodes v hashes to), C random bottom supernodes (denoted B(v)) and C logn
random middle supernodes (denoted M(v)) to which the virtual node will belong.

� All the virtual nodes associated with any given supernode are connected in a clique. (We do
this only if the set of virtual nodes in the supernode is of size at least �C lnn and no more
than �C lnn.)

� Between two sets of virtual nodes associated with two supernodes connected in the buttery
network, we have a complete bipartite graph. (We do this only if both sets of virtual nodes
are of size at least �C lnn and no more than �C lnn.)

� We map the n data items to the n= log n bottom supernodes in the buttery: each data
item, say d, is hashed to D random bottom supernodes; we denote by S(d) the set of bottom
supernodes that data item d is mapped to. (Typically, we would not hash the entire data
item but only it's title, e.g., \Singing in the Rain").

� The data item d is then stored in all the component virtual nodes of S(d) (if any bottom
supernode has more than �B lnn data items hashed to it, it drops out of the network.)

� Finally, we map the meta-data associated with each of the n virtual nodes in the network to
the n= log n bottom supernodes in the buttery. For each virtual node v, information about v

2We use the random oracle model ([6]) for these hash function, it would have suÆced to have a weaker assumption
such as that the hash functions are expansive.
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is mapped to D bottom supernodes. We denote by I(v) the set of bottom supernodes storing
information about virtual node v. (if any bottom supernode has more than �B lnn virtual
nodes hashed to it, it drops out of the network.)

� For each virtual node v in the network, we do the following:

1. We store the id of v on all component virtual nodes of I(v).
2. A complete bipartite graph is maintained between the virtual nodes associated with

supernodes I(v) and the virtual nodes in supernodes T (v), M(v) and B(v).

2.2 Implementation of Virtual CAN by Peers

Each peer that is currently live will map to exactly one node in the virtual network and each node
in the virtual network will be associated with at most one live peer. At all times we will maintain
the following two invariants:

1. If peers p1 and p2 map to virtual nodes x and y and x links to y in the virtual network, then
p1 links to p2 in the physical overlay network.

2. If peer p maps to virtual node x, then p stores the same data items that x stores in the virtual
network.

Recall that each virtual node in the network participates in C top, C logn middle and C bottom
supernodes. When a virtual node v participates in a supernode s in this way, we say that v is a
member of s. For a supernode s, we de�ne V (s) to be the set of virtual nodes which are members
of s. Further we de�ne P (s) to be the set of live peers which map to virtual nodes in V (s).

2.3 Search for a Data Item

We will now describe the protocol for searching for a data item from some peer p in the network.
We will let v be the virtual node p maps to and let d be the desired data item.

1. Let b1; b2; : : : ; bD be the bottom supernodes in the set S(d).

2. Let t1; t2; : : : ; tC be the top supernodes in the set T (v).

3. Repeat in parallel for all values of k between 1 and C:

(a) Let ` = 1.
(b) Repeat until successful or until ` > B:

i. Let s1; s2; : : : sm be the supernodes in the path in the buttery network from tk to
the bottom supernode b`.
� Transmit the query to all peers in the set P (s1).
� For all values of j from 2 to m do:
{ The peers in P (sj�1) transmit the query to all the peers in P (sj).

� When peers in the bottom supernode are reached, fetch the content from what-
ever peer has been reached.

� The content, if found, is transmitted back along the same path as the query was
transmitted downwards.

ii. Increment `.

2.4 Content and Peer Insertion

An algorithm for inserting new content into the network is presented in [1]. In this section, we
describe the new algorithm for peer insertion. We assume that the new peer knows one other
random live peer in the network. We call the new peer p and the random, known peer p0.
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1. p �rst chooses a random bottom supernode, which we will call b. p then searches for b in the
manner speci�ed in the previous section. The search starts from the top supernodes in T (p0)
and ends when we reach the node b(or fail).

2. If b is successfully found, we let W be the set of all virtual nodes, v , such that meta-data for
v is stored on the peers in P (b). We let W 0 be the set of all virtual nodes in W which are not
currently mapped to some live peer.

3. If b can not be found, or if W 0 is empty, p does not map to any virtual node. Instead it just
performs any desired searches for data items from the top supernodes, T (p0).

4. If there is some virtual node v in W 0, p takes over the role of v as follows:

(a) Let S = T (v) [M(v) [B(v). Let F be the set of all supernodes, s in S such that P (s)
is not empty. Let E = S � F .

(b) For each supernode s in F :
i. Let R be the set of supernodes that neighbor s in the buttery.
ii. p copies the links to all peers in P (r) for each supernode r in R. These links can

all be copied at once from one of the peers in P (s). Note that each peer in P (b)
contains a pointer to some peer in P (s).

iii. p noti�es all peers to which it will be linking to also link to it. For each supernode
r in R, p sends a message to one peer in P (r) notifying it of p's arrival. The peer
receiving the message then relays the message to all peers in P (r). These peers then
all point to p.

iv. If s is a bottom supernode, p copies all the data items that map to s. It copies these
data items from some peer in P (s).

(c) If E is non-empty, we will do one broadcast to all peers that are reachable from p.
We will �rst broadcast from the peers in all top supernodes in T (p) to the peers in all
reachable bottom supernodes. We will then broadcast from the peers in these bottom
supernodes back up the buttery network to the peers in all reachable top supernodes.
3:
i. p broadcasts the id of v along with the ids of all the supernodes in E. All peers that
receive this message, which are in supernodes neighboring some supernode in E will
connect to p.

ii. In addition to forging these links, we seek to retrieve data items for each bottom
supernode which is in the set E. Hence, we also broadcast the ids for these data
items. We can retrieve these data items if they are still stored on other peers.4

3 Conclusion

In this paper, we have introduced the notion of a dynamically strong fault-tolerance and have
described a content addressable network that has this property. Future directions include reducing
the number of messages sent for search and node insertion and reducing the number of pointers
stored at each peer.

3This broadcast takes O(log n) time but requires a large number of messages. However, we anticipate that this
type of broadcast will occur infrequently. In particular, under the assumption of random failures, this broadcast will
never occur with high probability.

4We note that, using the scheme in [7], we can retrieve the desired data items, even in the case where we are
connected to no more than n=2 live peers. To use this scheme, we need to store, for each data item of size s, some
extra data of size O(s=n) on each node in the network. Details on how to do this are ommitted.
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A Appendix

In this appendix, we provide proofs for the statements made in the paper.

A.1 Dynamic Fault-Tolerance

We will be using the following two theorems which follow from results in [1]. We �rst de�ne a peer
as �-good if it is connected to all but 1� � of the bottom supernodes.

Lemma A.1. Assume at any time, at least �n of the virtual nodes map to live peers for some

� < 1. Then for any �, we can choose appropriate constants C and D for the virtual network such

that at all times, all but an � fraction of the top supernodes are connected to all but an � fraction
of the bottom nodes.

Proof. This lemma follows directly from Theorem 4.1 in [1] by plugging in appropriate values.

Lemma A.2. Assume at any time, at least �n of the virtual nodes map to live peers for some

� < 1. Then for any � < 1=2, we can choose appropriate constants C and D for the virtual network

such that at all times, all �-good nodes are connected in one component with diameter O(log n).

Proof. By Lemma A.1, we can choose C and D such that all �-good peers can reach more than a
1=2 fraction of the bottom supernodes. Then for any two �-good peers, there must be some bottom
supernode such that both peers are connected to that same supernode. Hence, any two �-good
peers must be connected. In addition, the path between these two �-good peers must be of length
O(log n) since the path to any bottom supernode is of length O(log n)

Theorem A.3. For all � > 0 and value P which is polynomial in n, there exist constants k1(�),
k2(�) and k3(�) and k4(�) such that the following holds with high probability for the CAN for deletion

of up to P peers by the limited adversary:

� At any time, the CAN is �-robust

� Search takes time no more than k1(�) log n.

� Peer insertion takes time no more than k2(�) log n.

� Search requires no more than k3(�) log
2 n messages total.

� Every node stores no more than k4(�) log
3 n pointers to other nodes and k3(�) log n data items.

Proof. We briey sketch the argument that our CAN is dynamically fault-tolerant. For concrete-
ness, we will prove dynamic fault-tolerance with the assumption that 2n=10 peers are added when-
ever (1=10 � �)n peers are deleted by the adversary. The argument for the general case is similar.
Consider the state of the system when exactly 2n=10 virtual nodes map to no live peers. We will
focus on what happens for the time period during which the adversary kills o� (1=10 � �)n more
peers. By assumption, during this time, 2n=10 new peers join the network. In this proof sketch,
we will show that with high probability, the number of virtual nodes which are not live at the end
of this period is no more than 2n=10. The general theorem follows directly.

We know that Lemma A.1 applies during the time period under consideration since there are
always at least n=2 live virtual nodes. Let R be the set of virtual nodes that at some point during
this time period are not �-good. By Lemma A.2, peers in virtual nodes that are not in the set
R have been connected in the large component of �-good nodes throughout the considered time
interval. Thus these peers have received information broadcasted during successful peer insertions.
However, the peers mapping to virtual nodes in R may at some point have not been connected to
all the other �-good nodes and so may not have have received information broadcasted by inserted
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peers. We note that jRj is no more than �n by Lemma A.1 (since even with no insertions in the
network, no more than �n virtual nodes would be not be �-good at any point in the time period
under consideration). Hence we will just assume that those peers with stale information, i.e. the
peers in R, are dead. To do this, we will assume that the number of adversarial node deletions is
n=10. (We further note that all peers which are not �-good will actually be considered dead by all
peers which are �-good. This is true since no bottom supernode reachable from an �-good node will
have a link to a peer which is not �-good. Hence, such a virtual node will be fair game for a new
peer to map to.)

We claim that during the time interval, at least n=10 of the inserted peers will map to virtual
nodes. Assume not. Then there is some subset, S, of the 2n=10 peers that were inserted such
that jSj = n=10 and all peers in S did not connect to any bottom supernodes with information
on virtual nodes that had no live peers. Further there is some subset V , containing n=10 of the
2n=10 originally empty virtual nodes such that all virtual nodes in V have no peers after the
insertions. With high probability, there is some subset of the peers in S (and in fact any subset of
the inserted peers of size n=10), which are �-good and which visited at least kn= log n unique bottom
supernodes for some constant k > 0. For D (the constant de�ned in the virtual network section)
chosen suÆciently large, this set of kn log n unique bottom supernodes must contain more than
9n=10 virtual node ids (by expansion properties). But this is a contradiction since this implies that
one of the peers in S must have reached a bottom supernode which had information on a virtual
node in V .

Hence during the time that n=10 peers were deleted from the network, at least n=10 virtual
nodes were newly mapped to live peers. This implies that the number of virtual peers not mapped
to live nodes can only have decreased. This then implies that the number of virtual peers not
mapped to live nodes will not increase above 3n=10.

A.2 Time

That the algorithm for searching for data items takes O(log n) time and O(log2 n) messages is
proven in [1].

The common and fast case for peer insertion is when all supernodes to which the new peer's vir-
tual node belongs already have some peer in them. In this case, we spend constant time processing
each one of these supernodes so the total time spent is O(log n).

In the degenerate case where there are supernodes which have no live nodes in them, a broadcast
to all nodes in the network is required and the insertion time can be substantially larger. In practice,
we believe that this case would occur infrequently.

A.3 Space

Each node participates in C top supernodes. The number of links that need to be stored to play a
role in a particular top supernode is O(log n). This includes links to other nodes in the supernode
and links to the nodes that point to the given top supernode.

Each node participates in C logn middle supernodes. To play a role in a particular middle
supernode takes O(log n) links to point to all the other nodes in the supernode and O(log n) links
to point to nodes in all the neighboring supernodes. In addition, each middle supernode has
O(log n) roles associated with it and each of these roles is stored in D bottom supernodes. Hence
each node in the supernode needs O(log2n) links back to all the nodes in the bottom supernodes
which store roles associated with this middle supernode.

Each node participates in C bottom supernodes. To play a role in a bottom supernode requires
storing O(log n) data items. It also requires storing O(log n) links to other nodes in the supernode
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along with nodes in neighboring supernodes. In addition, it requires storing O(logn) links for each
of the O(logn) supernodes for each of the O(log n) roles that are stored at the node. Hence the
total number of links required is O(log3 n).
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