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Abstract

This paper argues that a common design paradigm for
systems is fundamentally flawed, resulting in unstable, un-
predictable behavior as the complexity of the system grows.
In this flawed paradigm, designers carefully attempt to pre-
dict the operating environment and failure modes of the sys-
tem in order to design its basic operational mechanisms.
However, as a system grows in complexity, the diffuse cou-
pling between the components in the system inevitably leads
to the butterfly effect, in which small perturbations can re-
sult in large changes in behavior. We explore this in the
context of distributed data structures, a scalable, cluster-
based storage server. We then consider a number of design
techniques that help a system to be robust in the face of
the unexpected, including overprovisioning, admission con-
trol, introspection, adaptivity through closed control loops.
Ultimately, however, all complex systems eventually must
contend with the unpredictable. Because of this, we believe
systems should be designed to cope with failure gracefully.

1. Introduction

As the world grows more dependent on complex com-
puting systems (such as scalable web sites, or even the In-
ternet itself), it has become increasingly evident that these
systems can exhibit unpredictable behavior when faced with
unexpected perturbations to their operating environment.
Such perturbations can be small and innocuous, but due
to latent flaws in the design of the system combined with
widespread coupling between its components, the effects of
small perturbations may be large and destructive, possibly
rendering the system inoperative.

For example, in [5], Floyd and Jacobson demonstrated
that periodic signals (such as router broadcasts) in the Inter-
net tend to become abruptly synchronized, leading to pat-
terns of loss and delays. As another example, in [4], Dr-
uschel and Banga demonstrate that with web servers run-

ning on traditional interrupt-driven operating systems, a
slight increase in load beyond the capacity of the server can
drive the server into a persistent state of livelock, drasti-
cally reducing its effective throughput. As a third example,
in [1], Arpaci-Dusseau et al. demonstrate that with conven-
tional software architectures, the difference in performance
resulting from placing data on the inner tracks vs. outer
tracks of a single disk can affect the global throughput of
an eight node cluster of workstations by up to 50%. A final
example is that of BGP “route flap storms” [11, 12]: un-
der conditions of heavy routing instability, the failure of a
single router can instigate a storm of pathological routing
oscillations. According to [11], there have been cases of
flap storms that have caused extended Internet outages for
millions of network customers.

By their very nature, large systems operate through the
complex interaction of many components. This interaction
leads to a pervasive coupling of the elements of the system;
this coupling may be strong (e.g., packets sent between ad-
jacent routers in a network) or subtle (e.g., synchronization
of routing advertisements across a wide area network). A
well-known implication of coupling in complex systems is
the butterfly effect [14]: a small perturbation to the system
can result in global change.

Avoiding Fragility

A common goal that designers of complex systems strive
for is robustness. Robustness is the ability of a system to
continue to operate correctly across a wide range of opera-
tional conditions, and to fail gracefully outside of that range.
In this paper, we argue against a seemingly common design
paradigm that attempts to achieve robustness by predicting
the conditions in which a system will operate, and then care-
fully architecting the system to operate well in those (and
only those) conditions. We claim that this design technique
is akin to precognition: attempting to gain knowledge of
something in advance of its actual occurrence.

As argued above, it is exceedingly difficulty to com-
pletely understand all of the interactions in a complex sys-



tem a priori. It is also effectively impossible to predict all
of the perturbations that a system will experience as a re-
sult of changes in environmental conditions, such as hard-
ware failures, load bursts, or the introduction of misbehav-
ing software. Given this, we believe that any system that
attempts to gain robustness solely through precognition
is prone to fragility.

In the rest of this paper, we expore this hypothesis by
presenting our experiences from building a large, complex
cluster-based storage system. We show that although the
system behaved correctly when operating within its design
assumptions, small perturbations sometimes led to the vio-
lation of these assumptions, which in turn lead to system-
wide failure. We then describe several design techniques
that can help systems to avoid this fragility. All of these
techniques have existed in some form in previous systems,
but our goal in this paper is to consolidate these techniques
as a first step towards the design of more robust systems.

2. DDS: A Case Study

In [7], we presented the design and implementation of
a scalable, cluster-based storage system called a distributed
data structure (DDS). A DDS, shown in Figure 1, is a high-
capacity, high-throughput virtual hash table that is parti-
tioned and replicated across many individual storage nodes
called bricks. DDS clients (typically Internet services such
as web servers) invoke operations on it through a library that
acts as a two-phase commit coordinator across replicas af-
fected by the operation. These two-phase commits are used
to achieve atomicity of all operations and one-copy equiva-
lence across the entire cluster.

The design philosophy we used while building the DDS
was to choose a carefully selected set of reasonable opera-
tional assumptions, and then to build a suite of mechanisms
and an architecture that would perform robustly, scalably,
and efficiently given our assumptions. Our design strategy
was essentially predictive: based on extensive experience
with such systems, we attempted to reason about the behav-
ior of the software components, algorithms, protocols, and
hardware elements of the system, as well as the workloads it
would receive. In other words, we largely relied on precog-
nition while designing mechanisms and selecting operating
assumptions to gain robustness in our system.

Within the scope of our assumptions, the DDS design
proved to be very successful. We were able to scale the
number of nodes in the system across two orders of mag-
nitude, and we observed a corresponding linear scaling in
performance. We also demonstrated fault-tolerance by de-
liberately inducing faults in the system and showing that the
storage remained available and consistent. However, as we
operated the system for a period of more than a year, we
observed several very unexpected performance and behav-
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Figure 1. DDS architecture: each box in the diagram
represents a software process. In the simplest case, each
process runs on its own physical machine in a cluster, how-
ever there is nothing preventing processes from sharing
physical machines.

ioral anomalies. In all cases, the anomalies arose because
of an unforeseen perturbation to the system that resulted in
the violation of one of our operating assumptions; the con-
sequences of these violations were usually severe.

In this section of the paper, we describe several of the
more interested and unexpected behavioral anomalies that
we encountered over the one or two years’ worth of experi-
ence we had with this system. Some may choose to consider
these anomalies simply as bugs in the design of the system,
arising from lack of foresight or naı̈vety on the part of its
designers. We argue, however, that these “bugs” all shared
similar properties: they were extremely hard to predict, they
arose from subtle interactions between many components
or layers in the system, and they bugs led to severe impli-
cations in our system (specifically, the violation of several
operating assumptions which in turn led to system unavail-
ability or data loss).

2.1. Garbage Collection Thrashing and Bounded
Synchrony

Various pieces in the DDS relied on timeouts to detect
the failure of remote components. For example, the two-
phase commit coordinators used timeouts to identify the
deaths of subordinates. Because of the low-latency (10-100
�s), redundant network in the cluster, we chose to set our
timeout values to several seconds, which is four orders of
magnitude higher than the common case round trip time of
messages in the system. We then assumed that components
that didn’t respond within this timeout had failed: we as-
sumed bounded synchrony.
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Figure 2. Performance with GC thrashing: this graph
depicts the (parametric) curve of latency and throughput as
a function of load. As load increases, so does throughput
and latency, until the system reaches a saturation point. Be-
yond this, additional load results in GC thrashing, and a
decrease in throughput with a continued latency increase.
After saturating, the system falls into a hole out of which it
must “climb”.

The DDS was implemented in Java, and therefore made
use of garbage collection. The garbage collector in our JVM
was a mark-and-sweep collector; as a result, as more active
objects were resident in the JVM heap, the duration that
the garbage collector would run in order to reclaim a fixed
amount of memory would increase. If the DDS were operat-
ing near saturation, slight (random) fluctuations in the load
received by bricks in the system would increase the pressure
on their garbage collector, causing the effective throughput
of these bricks to drop. Because the offered load to the sys-
tem is independent of this effect, this would cause the de-
graded bricks to “fall behind” relative to its peers, leading
to more active objects in its heap and a further degradation
in performance. This catastrophe leads to a performance
response of the system as shown in Figure 2.

Once the system was pushed past saturation, the catas-
trophe would cause the affected node to slow down until its
latency exceeded the timeouts in the system. Thus, the pres-
ence of garbage collection would cause the system to violate
the assumption of bounded synchrony as it approached and
then exceeded saturation.

2.2. Slow Leaks and Correlated Failure

We used replication in the DDS to gain fault-tolerance:
by replicating data in more than one location, we gained
the ability to survive the faults of individual components.
We further assumed that failures would be independent, and
therefore the probability that multiple replicas would simul-
taneously fail is vanishingly small.

For the most part, this assumption was valid. We only
encountered two instances of correlated failure in our DDS.
The first was due to blatant, naive bugs that would cause
bricks to crash; these were quickly fixed. However, the sec-
ond was much more subtle. Our bricks had a latent race con-

dition in their two-phase commit handling code that didn’t
affect correctness, but which had the side-effect of a caus-
ing a memory leak. Under full load, the rareness of this
race condition caused memory to leak at the rate of about
10KB/minute. We configured each brick’s JVM to limit its
heap size to 50MB. Given this leak rate, the bricks’ heaps
would fill after approximately 3 days.

Whenever we launched our system, we would tend to
launch all bricks at the same time. Given roughly balanced
load across the system, all bricks therefore would run out
of heap space at nearly the same time, several days after
they were launched. We also speculated that our automatic
failover mechanisms exacerbated this situation by increas-
ing the load on a replica after a peer had failed, increase the
rate at which the replica leaked memory.

We did in fact observe this correlated failure in practice:
until we isolated and repaired the race condition, our bricks
would fail predictably within 10-20 minutes of each other.
The uniformity of the workload presented to the bricks was
itself the source of coupling between them; this coupling,
when combined with a slow memory leak, lead to the vio-
lation of our assumption of independent failures, which in
turn caused our system to experience unavailability and par-
tial data loss.

2.3. Unchecked Code Dependencies and Fail-Stop

As mentioned above, we used timers in order to detect
failures in our system. If a timer expired, we assumed that
the corresponding entity in the system had crashed; there-
fore, in addition to assuming bounded synchrony, we also
assumed nodes would behave in a fail-stop manner (i.e.,
a node that failed to respond to one message would never
again respond to any message).

To gain high performance from our system given the
highly concurrent workload, we implemented our bricks us-
ing an event-driven architecture: the code was structured as
a single thread executing in an event loop. To ensure the
liveness of the system, we strove to ensure that all long-
latency operations (such as disk I/O) were performed asyn-
chronously. Unfortunately, we failed to notice that portions
of our code that implemented a network session layer made
use of blocking (synchronous) socket connect() routines
in the Java class library. This session layer was built to at-
tempt to automatically reinstantiate a network connection
if it was broken. The main event-handling thread therefore
could be surreptitiously borrowed by the session layer to
forge transport connections.

On several occasions, we noticed that some of our bricks
would seize inexplicably for a multiple of 15 minutes (i.e.,
15 minutes, 30 minutes, 45 minutes, ...), and then resume
execution, egregiously violating our fail-stop assumption.
After much investigation, we traced this problem down to



a coworker that was attempting to connect a machine that
was behind a firewall to the cluster. The firewall was silently
dropping incoming TCP syn packets, causing session layers
to block inside the connect() routine for 15 minutes for
each connection attempt made to that machine.

While this error was due to our own failure to verify the
behavior of code we were using, it serves to demonstrate
that the low-level interaction between independently built
components can have profound implications on the overall
behavior of the system. A very subtle change in behavior
(a single node dropping incoming SYN packets) resulted in
the violation of our fail-stop assumption across the entire
cluster, which eventually lead to the corruption of data in
our system.

3. Towards Robust Complex Systems

The examples in the previous section served to illustrate
a common theme: small changes to a complex, coupled
system can result in large, unexpected changes in behavior,
possibly taking the system outside of its designers’ expected
operating regime. In this section, we outline a number of
design strategies that help to make systems more robust in
the face of the unexpected. None of these strategies are
a panacea, and in fact, some of them may add significant
complexity to a system, possibly introducing more unex-
pected behavior. Instead, we present them with the hope of
stimulating thought in the systems community for dealing
with this increasingly common problem: we believe that
an important focus for future systems research is building
systems that can adapt to unpredictably changing environ-
ments, and that these strategies are a useful starting point
for such investigation.

Systematic overprovisioning: as exemplified in Sec-
tion 2.1, systems tend to become less stable when operating
near or beyond the threshold of load saturation. As a sys-
tem approaches this critical threshold, there is less “slack”
in the system to make up for unexpected behavior: as a re-
sult, the system becomes far less forgiving (i.e., fragile). A
simple technique to avoid this is to deliberately and system-
atically overprovision the system; by doing so, the system
is ensured to operate in a more forgiving regime (Figure 3).

Overprovisioning doesn’t come for free; an overprovi-
sioned system is underutilizing its resources, and it is tempt-
ing to exploit this underutilization instead of adding more
resources as the load on the system grows. In fact, it
is only when the system nears saturation that many well-
studied problems (such as load balancing) become inter-
esting. However, we believe it is usually better to have
a well-behaved, overprovisioned system than a poorly be-
haved, fully utilized one, especially given that computing
resources are typically inexpensive relative to the cost of
human designers.
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Figure 3. An overprovisioned system: by overprovi-
sioning relative to the expected load, the system has slack:
it can withstand unexpected bursts of load without falling
into the “hole” associated with operating beyond saturation.

However, overprovisioning contains the implicit as-
sumption that the designers can accurately predict the ex-
pected operating regime of the system. As we’ve argued in
Section 1, this assumption is often false, and it can lead to
unexpected fragility.

Use admission control: given that systems tend to be-
come unstable as they saturate, a useful technique is to use
admission control to reject load as the system approaches
the saturation point. Of course, to do this requires that the
saturation point is identifiable; for large systems, the num-
ber of variables that contribute to the saturation point may
be large, and thus statically identifying the saturation point
may be difficult. Admission control often can be added to a
system as an “orthogonal” or independent component. For
example, high throughput web farms typically use layer 5
switches for both load balancing and admission control.

To reject load still requires resources from the system;
each incoming task or request must be turned back, and
the act of turning it back consumes resources. Thus, we
view systems that perform admission control as having two
classes of service: normal service, in which tasks are pro-
cessed, and an extremely lightweight service, in which tasks
are rejected. It is important to realize that the lightweight
service has a response curve similar to that shown in Fig-
ure 2: a service, even if it is performing admission control,
can saturate and then collapse. This effect is called livelock,
and it is described in [4]. Admission control simply gives
a system the ability to switch between two response curves,
one for each class of service.

Build introspection into the system: an introspective
system is one in which the ability to monitor the system is
designed in from the beginning. As argued in [2], by build-
ing measurement infrastructure into a system, designers are
much more readily able to monitor, diagnose, and adapt to
aberrant behavior than in a black-box system. While this
may seem obvious, consider the fact that the Internet and
many of its protocols and mechanisms do not include the
ability to introspect. As a result, researchers have often



found it necessary to subvert features of existing protocols
[9, 15], or to devise cunning mechanisms to deduce prop-
erties of network [13]. We believe that introspection is a
necessary property of a system for it to be both managable
and for its designers and operators to be able to help it adapt
to a changing environment.

Introduce adaptivity by closing the control loop: the
usual way for systems to evolve over time is for their de-
signers and operators to measure its current behavior, and
then to correspondingly adapt its design. This is essentially
a control loop, in which the human designers and operators
form the control logic. This loop operates on a very long
timescale; it can take days, weeks, or longer for humans to
adapt a complex system.

However, an interesting class of systems are those which
include internal control loops. These systems incorporate
the results of introspection, and attempt to adapt control
variables dynamically to keep the system operating in a sta-
ble or well-performing regime. This notion of adaptation
is important even if a system employs admission control or
overprovisioning, because internal as well as external per-
turbations can affect the system. For example, modern disks
occasionally perform thermal recalibration, vastly affecting
their performance; if a system doesn’t adapt to this, tran-
sient periods of poor performance or even instability may
result.

Closed control loops for adaptation have been exploited
in many systems, including TCP congestion control, online
adaptation of query plans in databases [8, 10], or adaptive
operating systems that tuning their policies or run-time pa-
rameters to improve performance [16]. All such systems
have the property that the component performing the adap-
tation is able to hypothesize somewhat precisely about the
effects of the adaptation; without this ability, the system
would be “operating in the dark”, and likely would become
unpredictable. A new, interesting approach to hypothesiz-
ing about the effects of adaptation is to use statistical ma-
chine learning; given this, a system can experiment with
changes in order to build up a model of their effects.

Plan for failure: even if a system employs all of
the above strategies, as it grows sufficiently complex, un-
expected perturbations and failure modes inevitably will
emerge. Complex systems must expect failure and plan for
it accordingly.

Planning for failure might imply many things: systems
may attempt to minimize the damage caused by the failure
by using robust abstractions such as transactions [6], or the
system may be constructed so that losses are acceptable to
its users (as is the case with the web). Systems may attempt
to minimize the amount of time in which they are in a failure
state, for example by checkpointing the system in known
good states to allow for rapid recovery. In addition, systems
may be organized as several weakly coupled compartments,

in the hope that failures will be contained within a single
compartment. Alternatively, systems may stave off failure
by proactively “scrubbing” their internal state to prevent it
from accumulating inconsistencies [3].

4. Summary

In this paper, we have argued that a common design
paradigm for complex systems (careful design based on a
prediction of the operating environment, load, and failures
that the system will experience) is fundamentally fragile.
This fragility arises because the diffuse coupling of compo-
nents within a complex systems makes them prone to com-
pletely unpredictable behavior in the face of small pertur-
bations. Instead, we argue that a different design paradigm
needs to emerge if we want to prevent the ever-increasing
complexity of our systems from causing them to become
more and more unstable. This different design paradigm is
one in which systems are given the best possible chance of
stable behavior (through techniques such as overprovision-
ing, admission control, and introspection), as well as the
ability to adapt to unexpected situations (by treating intro-
spection as feedback to a closed control loop). Ultimately,
systems must be designed to handle failures gracefully, as
complexity seems to lead to an inevitable unpredictability.

In the future, we hope to explore the rich design space
associated with robust, complex systems. Our plans include
evaluating and extending the techniques identified in this
paper in the context of adaptive, wide-area information de-
livery systems, such as caching hierarchies, content distri-
bution networks, and peer-to-peer content sharing systems.
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